Optimal actuator/sensor placement for nonlinear control of the Kuramoto-Sivashinsky equation

نویسندگان

  • Yiming Lou
  • Panagiotis D. Christofides
چکیده

In this paper, we use a methodology that was recently proposed by Antoniades and Christofides to compute the optimal actuator/sensor locations for the stabilization, via nonlinear static output feedback control, of the zero solution of the Kuramoto–Sivashinsky equation (KSE) for values of the instability parameter for which this solution is unstable. The theoretical results are illustrated through computer simulations of the closed-loop system using a high-order discretization of the KSE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation

In this paper we obtain  exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems.    The methods used  to determine the exact solutions of the underlying equation are the Lie group analysis  and the simplest equation method. The solutions obtained are  then plotted.

متن کامل

Boundary local null-controllability of the Kuramoto-Sivashinsky equation

We prove that the Kuramoto-Sivashinsky equation is locally controllable in 1D and in 2D with one boundary control. Our method consists in combining several general results in order to reduce the nullcontrollability of this nonlinear parabolic equation to the exact controllability of a linear beam or plate system. This improves known results on the controllability of Kuramoto-Sivashinsky equatio...

متن کامل

Application of Optimal Homotopy Analysis Method for Solitary Wave Solutions of Kuramoto-Sivashinsky Equation

In this paper, the optimal homotopy analysis method is applied to find the solitary wave solutions of the Kuramoto-Sivashinsky equation. With three auxiliary convergence-control parameters, whose possible optimal values can be obtained by minimizing the averaged residual error, the method used here provides us with a simple way to adjust and control the convergence region of the solution. Compa...

متن کامل

Null Controllability of the Stabilized Kuramoto-Sivashinsky System with One Distributed Control

This paper presents a control problem for a one-dimensional nonlinear parabolic system, which consists of a Kuramoto–Sivashinsky–Korteweg de Vries equation coupled to a heat equation. We address the problem of controllability by means of a control supported in an interior open subset of the domain and acting on one equation only. The local null-controllability of the system is proved. The proof...

متن کامل

Optimal Parameter-dependent Bounds for Kuramoto-sivashinsky-type Equations

We derive a priori estimates on the absorbing ball in L2 for the stabilized and destabilized Kuramoto-Sivashinsky (KS) equations, and for a sixth-order analog, the Nikolaevskiy equation, and in each case obtain bounds whose parameter dependence is demonstrably optimal. This is done by extending a Lyapunov function construction developed by Bronski and Gambill (Nonlinearity 19, 2023–2039 (2006))...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Contr. Sys. Techn.

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2003